Introduction

As LED’s become more efficient and more compact their sensitivity to ESD events is also increasing in the majority of cases. Despite a great deal of effort in the semiconductor industry in the past decade, ESD still affects production yields, manufacturing costs, product quality, product reliability, and profitability of all semiconductor devices, including LED’s. Industry experts have estimated average product losses due to static damage to range from 8-33 %1.

The cost of the damaged device itself is often negligible, but if associated costs like repair and rework, shipping, labour and overhead are included, clearly there is a need to understand how to handle and process devices which are sensitive to ESD. This is what this application note is about.

Fundamentals of ESD

Controlling electrostatic discharge begins with understanding how electrostatic charge occurs in the first place. Electrostatic charge is most commonly created by the contact and separation of two materials, which is known as "tribo-electric charging." It involves the transfer of electrons between materials. When two materials are placed in contact and then separated, negatively charged electrons are transferred from the surface of one material to the surface of the other material. Which material loses electrons and which gains electrons will depend on the nature of the two materials. The material that loses electrons becomes positively charged, while the material that gains electrons is negatively charged.

For example, a person walking across the floor generates static electricity as shoe soles contact and then separate from the floor surface. An electronic device sliding into or out of a bag, magazine or tube generates an electrostatic charge as the device's housing and metal leads make multiple contacts and separations with the surface of the container. While the magnitude of electrostatic charge may be different in these examples, static electricity is indeed generated.
<table>
<thead>
<tr>
<th>MEANS OF GENERATION</th>
<th>10-25 % REL. HUMIDITY</th>
<th>65-99 % RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking across carpet</td>
<td>35000V</td>
<td>1500V</td>
</tr>
<tr>
<td>Walking across vinyl tile</td>
<td>12000V</td>
<td>250V</td>
</tr>
<tr>
<td>Worker at bench</td>
<td>6000V</td>
<td>100V</td>
</tr>
<tr>
<td>Poly bag picked up from bench</td>
<td>20000V</td>
<td>1200V</td>
</tr>
<tr>
<td>Chair with urethane foam</td>
<td>18000V</td>
<td>1500V</td>
</tr>
</tbody>
</table>

Table 1: Typical voltage spike levels by different means of generation

This process of material contact, electron transfer and separation is in reality a more complex mechanism than described here. The amount of charge created by triboelectric generation is affected by the area of contact, the speed of separation, relative humidity, and other factors. Once the charge is created on a material, it becomes an "electrostatic" charge. This charge may be transferred away from the material, creating an electrostatic discharge, or ESD event (Voltage spike). Additional factors such as the resistance of the actual discharge circuit and the contact resistance at the interface between contacting surfaces also affect the actual charge that can cause damage.

Table 1 shows typical voltage spike levels by different means of generation and relative humidity levels.

ESD damage is usually caused by one of three events: direct electrostatic discharge to the device, electrostatic discharge from the device or field-induced discharges. Damage to an ESDS (electrostatic discharge sensitive) device by the ESD event is determined by the device's ability to dissipate the energy of the discharge or withstand the voltage levels involved. This is known as the device's "ESD sensitivity".

Discharge to the Device

An ESD event can occur when any charged conductor (including the human body) discharges to an ESDS device. The most common cause of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the electrostatic discharge sensitive (ESDS) device. The model used to simulate this event is the Human Body Model (HBM).

A similar discharge can occur from a charged conductive object, such as a metallic tool or fixture. The model used to characterize this event is known as the Machine Model (MM)

HBM Model

The Human Body Model is the most commonly used model for classifying device sensitivity to ESD and used by OSRAM-OS to classify their devices, acc. to JESD22-A114-E. The HBM testing model represents the discharge from the fingertip of a standing individual delivered to the device. It is modelled by a 100 pF capacitor discharged through a switching component and a 1.5 kΩ series resistor into the component. A typical Human Body Model circuit, as described in JESD22-A114-E, is shown in Figure 1.
MM Model

A discharge similar to the HBM event also can occur from a charged conductive object, such as a metallic tool or fixture. Originating in Japan as the result of trying to create a worst-case HBM event, the model is known as the Machine Model. This ESD model consists of a 200 pF capacitor discharged directly into a component with no series resistor (Figure 2).

The MM version does not have a 1.5 kΩ resistor, but otherwise the test board and the socket are the same as for HBM testing. The series inductance, as shown in Figure 2, is the dominating parasitic element that shapes the oscillating machine model waveform.

Discharge from the Device

The transfer of charge from an ESDS device is also an ESD event. Static charge may accumulate on the ESDS device itself through handling or contact with packaging materials, working surfaces or machine surfaces. This frequently occurs when a device moves across a surface or vibrates in a package. The model used to simulate the transfer of charge from an ESDS device is referred to as the Charged Device Model (CDM). The capacitance and energies involved are different from those of a discharge to the ESDS device. In some cases, a CDM event can be more destructive than the HBM for some devices.

The trend towards automated assembly would seem to solve the problems of HBM ESD events. However, it has been shown that components may be more sensitive to damage when assembled by automated equipment. A device may become charged, for example, from sliding down the feeder. If it then contacts the insertion head or another
conductive surface, a rapid discharge occurs from the device to the metal object.

**CDM Model**

The transfer of charge from an ESDS device is also an ESD event. A device may become charged, for example, from sliding down the feeder in an automated assembler. If it then contacts the insertion head or another conductive surface, a rapid discharge may occur from the device to the metal object. This event is known as the Charged Device Model (CDM) event and can be more destructive than the HBM for some devices. However relating to LEDs this event is no critical because of the strictly limited mass and capacitance of the LEDs.

**Field Induced Discharges**

Another event that can directly or indirectly damage devices is termed Field Induction. As noted earlier, whenever any object becomes electro-statically charged, there is an electrostatic field associated with that charge. If an ESDS device is placed in that electrostatic field, a charge may be induced on the device. If the device is then momentarily grounded while within the electrostatic field, a transfer of charge from the device occurs as a CDM event. If the device is removed from the region of the electrostatic field and grounded again, a second CDM event will occur as charge (of opposite polarity from the first event) is transferred from the device.

**OSRAM Products & their ESD Sensitivity**

The product mix of OSRAM Opto-Semiconductors represents everything from small scale packages with chip sizes from 100 µm-300 µm, for low power applications to larger packages and LED modules for high power demanding applications. For details please refer to the latest product catalogue.

Those larger packages usually have chip sizes larger than 500 µm and are often incorporating an ESD diode to provide ESD withstand voltage protection up to 2 kV, acc. to JESD22-A114-E. As an example of the Golden DRAGON® power package, the ESD protection diode is shown in Figure 3.

![Figure 3: Setup of the Golden DRAGON® with ESD protection diode](image1)

For some of the LED devices it is impossible to incorporate an ESD protection diode, due to the package space restrictions (Figure 4). In combination with the new Thinfilm chip technology those devices have eventually a much lower ESD withstand voltage, which can be as low as JEDEC level 0. Details please refer to the corresponding devices datasheet.

![Figure 4: 6-lead Multi TOPLED® with Thinfilm Chips and no ESD protection diode, due to space restrictions](image2)
Considerations of Circuit Design

Most of OSRAM OS LEDs are capable of withstanding ESD voltage up to 2 kV in compliant with JESD22-A114-E. To further enhance the protection grade in module design, the following scheme instantiates an application of light bar with a few considerations against system-level ESD. Designer should be aware of, but not limited to, factors below.

Figure 5: Adopting a reversed Zener diode in parallel with LED string

Breakdown voltage

When a surge occurs (refer to figure 6) and it exceeds the maximum ratings of LEDs, the Zener diode provides another path to channelize the current.

Figure 6: The most commonly used waveform of ESD discharge defined by IEC61000-4-2

A significant parameter, breakdown voltage ($V_{BR}$), is required to be higher than the total forward voltage of LEDs to ensure the functionality of the circuitry under normal circumstances.

Response time

The response time of dedicated protection diode has to be faster than the LEDs. Thus the mechanism can work effectively before a pulse might cause any damage to the LEDs. Due to the short switching time of LEDs, the response time of protection device is supposed to be in the range of nanoseconds or less. Note that this characteristic has to be considered in both directions from anode to cathode, and vice versa.

Placement

An ESD protection device ought to be placed near by the power input in order to protect the whole module from incoming surges of power supply. However, to prevent damage which occurs from other sources, for instance by touching the PCB, the most applicable location should be placed the closest to the protected circuitry, i.e. LEDs.

An appropriate way to locate the component therefore would vary from one case to another. Designer must first identify where the most potential damage could come from.

The above-mentioned precautions should be pre-examined before any designer going about selecting the appropriate protective devices.
Typical Symptom of ESD Damage

ESD endamagement is typically created by short pulses of high power with a pulse length below 100 ns. The energy deposition in the structure due to the discharge (ESD event) engender melting holes in the semiconductors, and resulting from the thermal impact it is sometimes combined with small crack lines up to the surface of the LED die (Figure 7). Therefore the ESD event is not always visible on the surface of the chip, but can be seen from the electrical characteristic of the LED.

Massive surface destruction, like melting of Au or nitride, may be caused by electrical overstress (EOS), and can be mainly observed at the edge of the bond pad (Figure 8). Contrary to ESD an EOS damage relay on comparatively long pulses (ms) of lower power but high energy.

In practice however it is often impossible to clearly detect and differentiate both effects since they can crop up combined or caused by ambiguous power levels or pulse lengths.

Figure 7: Typical failure of ESD impairment (3kV, analysis with FIB and SEM)

Figure 8: Typical failure of EOS deterioration (analysis with FIB and SEM)
Possible Causes

Static discharge is almost always associated with people, the type of material/clothes that people wear and/or handling equipment.

Analytical Techniques

1. Electrical characterization – Curve tracer.
2. Optical detection – Optical microscopy

Where to take care of ESD?

Everyone who is handling ESD sensitive devices has to be aware about ESD protection and has to take care of suitable measures in order to prevent ESD.

This has to be done in all departments where ESD sensitive devices are handled:

- Incoming inspection
- Manufacturing line
- Testing / Outgoing inspection
- Packaging
- Storage / Warehouse
- Shipping department

Recommendations of ESD Control

1. Grounding / Bonding Systems

Grounding/Bonding Systems shall be used to ensure that ESDS items, personnel and any other conductors (e.g. mobile equipment) are at the same electrical potential. As a minimum, ESDS items, personnel and other related conductors shall be bonded or electrically interconnected.

Please pay attention that the ESD grounding is not the common hard earthing (protective earth PE).

2. Personnel Grounding

All personnel shall be bonded or electrically connected to ground or contrived ground when handling ESD sensitive items. When personnel are seated at ESD protective workstations, they shall be connected to the common point ground via a wrist strap system.

3. Protected Areas

Handling of ESDS parts, assemblies and equipment without ESD protective covering or packaging shall be performed in a Protected Area (Figure 8). Caution signs indicating the existence of the Protected Area shall be posted and clearly visible to personnel prior to entry to the Protected Area. ESDS items shall be packaged in ESD protective packaging while not in a Protected Area. Access to the Protected Area shall be limited to personnel who have completed appropriate ESD training. Trained personnel shall escort untrained individuals while in a Protected Area. All nonessential insulators, such as those made of plastics and paper (e.g. coffee cups, food wrappers and personal items) must be removed from the workstation. Ionization or other charge mitigating techniques shall be used at the workstation to neutralize electrostatic fields on all process essential insulators (e.g. ESDS device parts, device carriers and specialized tools) if the electrostatic field is considered a threat.

4. Packaging

ESD protective packaging and package marking shall be in accordance with the recommendation of the standards. For smooth business processes ESD protective packaging can be defined and fixed in the contract, purchase order, drawing or other documentation. Packaging shall be defined for all material movement within Protected Areas, between job sites and field service operations.
5. Marking

ESDS assemblies and equipment containing ESDS parts and assemblies should be marked with an ESD caution symbol, (i.e., EOS/ESD S8.1). The symbol should also be located on equipment in a position readily visible to personnel. In addition, the symbol should be located in a position readily visible when an ESDS assembly is incorporated into its next higher assembly.

6. Equipment

➢ AC Powered Tools
The working part of AC powered tools should be capable of providing a conductive path to ground. New powered hand tools such as soldering irons typically should have a tip to ground resistance of less than 1.0 ohm.
Note - This resistance may increase with use but should be less than 20.0 ohms for verification purposes.

➢ Battery Powered and Pneumatic Hand Tools
Battery powered and pneumatic hand tools while being held should have a resistance to ground of less than $1 \times 10^{12}$ ohms.

➢ Automated Handlers
All conductive or static dissipative components of automated handling equipment should provide a continuous conductive path to ground, whether stationary or in motion. The equipment should minimize charge generation of the ESDS items that are handled. Where insulating materials are necessary in the device path, they should be designed to minimize electric fields and the charge imparted to devices being handled.

7. Handling

ESD protective handling procedures shall be established, documented, and implemented. Handling procedures are required for all areas where ESDS items are manually or
When outside their protective covering or packaging, ESDS items shall be handled only in a Protected Area.

<table>
<thead>
<tr>
<th></th>
<th>Receiving &amp; Incoming Inspection</th>
<th>Stores &amp; Storage</th>
<th>Kitting</th>
<th>Automatic insertion</th>
<th>Manual Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist bands</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Worksurface Mats</td>
<td>✦</td>
<td></td>
<td>✦</td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Floor mats</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
</tr>
<tr>
<td>Shoe Grounders</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Clothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Shielding Bags</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Conductive Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Conductive Containers</td>
<td>✦</td>
<td>✦</td>
<td>✦</td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Field Service Kit/Mat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✦</td>
</tr>
<tr>
<td>Ionizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wave Soldering</th>
<th>Board Testing Rework</th>
<th>Equipment Assembly</th>
<th>Packaging &amp; Shipping</th>
<th>Field Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist bands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worksurface Mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoe Grounders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding Bags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductive Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductive Containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Service Kit/Mat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Recommendation for the use of ESD Control Products
ESD Control Checklist

Grounding / General ESD Controls

1. Is there a common ESD ground for the entire plant?
2. Is ESD protective flooring used in ESD controlled areas where the personnel are mobile while handling ESD sensitive items?
3. Where ESD protective flooring is used, is the flooring grounded to the plant's common ESD ground?
4. Is the ESD protective flooring grounded properly at prescribed intervals?
   (M1) Measure the resistivity of the ESD protective flooring;
   Spec: 0-1e5 Ohms/Square
   (M2) Measure field voltages at different areas of the floor;
   Spec: < 200V
   (M3) Measure the resistance between a flooring ground point and the common ESD ground;
   Spec: < 1 Ohm

5. Where ESD protective flooring is used for personnel grounding, are foot grounding devices or conductive footwear worn?
6. Where conductive footwear is used, do personnel check continuity to ground upon entering the area?
   (M4) Measure the resistivity of the conductive shoes;
   Spec: 0-1e5 Ohms/Square

7. Are the ground points of all workstations grounded to the common ESD ground of the plant?
   (M5) Measure the resistance between a workstation ESD ground point and the common ESD ground;
   Spec: < 1 Ohm

8. Are personnel wearing grounded wrist straps at the ESD-protected workstations?
9. Are personnel checking their wrist straps for continuity at regular intervals and are the results of these checks logged consistently and kept?
10. Where used, are continuous ground monitors checked and maintained periodically?
11. Are the wrist strap/conductive footwear checkers checked and maintained regularly?
12. Do wrist straps and foot grounders fit correctly?
13. Are wrist straps and foot grounders working properly?
14. Are disposable foot grounders limited to one-time use?
15. Do personnel wear ESD protective garments or smocks in ESD controlled areas?
16. Are ESD protective garments correctly worn?
   (M6) Measure the resistivity of the ESD protective garment/smock;
   Spec: 0-1e5 Ohms/Square

17. Are the ground points of all equipment grounded to the common ESD ground of the plant?
   (M7) Measure the resistances between equipment ESD ground points and the common ESD ground;
   Spec: < 1 Ohm
   (M8) Measure field voltages around the equipment;
   Spec: < 200V

18. Are non-grounded personnel at least 4 feet away from any ESD sensitive area?
19. Are charge-generating equipment at least 4 feet away from any ESD sensitive area?
20. Is the surface of the worktable where ESD-sensitive devices are handled covered with a static dissipative mat?
21. Is the static dissipative mat on the table properly grounded to the ESD common ground at prescribed intervals?
(M9) Measure the resistivity of the worktable surface;  
Spec: 1e5-1e9 Ohms/Square

(M10) Measure the resistance of the dissipative mat ground point to the common ESD ground;  
Spec: < 1 Ohm

(M11) Measure field voltages at different areas of the worktable surface;  
Spec: < 200V

22. Are the ground points of workstations and equipment properly labelled as such?

23. Does the plant have a prescribed procedure and frequency for cleaning their ESD protective flooring/surfaces to maintain their conductive/dissipative properties?

24. Are there any non-essential personal items in the ESD controlled areas?

(M12) Measure field voltages around any non-essential personal items;  
Spec: < 200V

25. Are there any insulating materials in ESD controlled areas, e.g., plastic bags, plastic envelopes, plastic folders, boxes?

26. Where insulating materials are present in ESD controlled areas, are ionizers in use?

27. Where ionizers are in use, are these ionizers properly positioned and distributed to provide adequate ESD protection?

28. Where ionizers are in use, are these ionizers being checked and maintained regularly?

(M13) Measure field voltages around any insulating / triboelectric items in the workplace;  
Spec: < 200V

29. Is the RH of ESD controlled areas maintained above 40% and is the RH in these areas monitored?

Storage / Stationing / Transfer of Materials

30. Are storage racks or cabinets conductive, but covered with dissipative liners in areas contacting ESD sensitive items?

31. Are the conductive storage racks or cabinets individually grounded to the common ESD ground?

(M14) Measure the resistance of the rack/cabinet ground point to the common ESD ground;  
Spec: < 1 Ohm

32. Is each level of a storage rack or cabinet grounded to the other levels?

33. Are the trays or boxes used in storing ESD sensitive materials on dissipative racks/cabinets also dissipative?

(M15) Measure field voltages around the storage racks and cabinets  
Spec: < 200V

34. Do personnel ground themselves first before handling ESD sensitive items that are stored on racks or in cabinets?

35. Are carts used for transporting ESD sensitive materials grounded to the ESD protective flooring with a drag chain or conductive wheels?

36. Is each level of a multi-level cart grounded to the other levels?

37. Are boards/units being transported in dissipative containers with dissipative lids to shield them from electric fields?

38. Are the carts properly grounded to the common ESD ground when not in transit?

(M16) Measure field voltages around the carts while stationary and while in transit;  
Spec: < 200V

39. Are the dissipative containers of transported boards/units allowed to discharge through a dissipative mat on the work table before they are opened?

40. Do personnel ground themselves first before handling ESD sensitive items
from a cart/container or on the work table?

**Plant ESD Control Program**

41. Is there a person, entity, or group owning the over-all ESD control program of the plant?

42. Does the plant have a metric or indicator that pertains to the level of success of their ESD control program?

43. Is there a system in place for continuously reviewing and improving the plant's ESD control program?

44. Is there a system for conducting regular ESD control audits in the plant?

45. Is there a standard checklist used during ESD audits?

46. Does the ESD audit checklist include actual measurements of resistivities and field voltages?

47. Does the plant have a resistivity meter and a field meter for actual measurement of resistivities and voltage build-ups during audits?

48. Is there a system for tracking and closing open action items generated by the internal ESD audits?

49. Are ESD Control requirements imposed on visitors?

50. Is there a system for monitoring employee violations of ESD controls?

51. Is there a system for correcting system issues that lead to ESD control violations?

52. Is there a system for implementing disciplinary actions on personnel who commit ESD violations?

**ESD Control Training/Certification**

53. Are all employees in the plant trained on ESD awareness and control?

54. Is there a record of all employees' ESD training history?

55. Is there a standard training module used for training new employees on ESD control?

56. Are all personnel working in ESD controlled areas trained and certified on ESD?

57. Are the ESD instructors trained and certified as such?

58. Is there a system for identifying employees that need to undergo ESD training or recertification?

59. Is there a central repository of ESD training materials and references?

**Monitoring an ESD Control Program**

Once an ESD Control Program has been implemented, it is necessary to routinely monitor the program to make sure every element is working properly.

The following table 2 gives a recommendation about the time intervals for the some ESD monitoring.

<table>
<thead>
<tr>
<th>Product</th>
<th>Test-Equipment</th>
<th>Testing interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Protected Area</td>
<td>Visual</td>
<td>Daily</td>
</tr>
<tr>
<td>Packaging</td>
<td>Visual</td>
<td>Daily</td>
</tr>
<tr>
<td>Wrist bands</td>
<td>GroundCheck Grounding Tester</td>
<td>Daily</td>
</tr>
<tr>
<td>Shoe grounders</td>
<td>GroundCheck Grounding Tester</td>
<td>Daily</td>
</tr>
<tr>
<td>Shoes</td>
<td>GroundCheck Grounding Tester</td>
<td>Daily</td>
</tr>
<tr>
<td>Work surfaces</td>
<td>Surface Resistivity Meter</td>
<td>Monthly</td>
</tr>
<tr>
<td>Field surface Kit</td>
<td>Surface Resistivity Meter</td>
<td>Monthly</td>
</tr>
<tr>
<td>Flooring</td>
<td>Surface Resistivity Meter</td>
<td>Monthly</td>
</tr>
<tr>
<td>Chairs</td>
<td>ChairCheck</td>
<td>Monthly</td>
</tr>
<tr>
<td>Ionizers</td>
<td>Ionizer Performance Analyser</td>
<td>Monthly</td>
</tr>
<tr>
<td>Clothing</td>
<td>Resistivity Meter</td>
<td>Semi-annual</td>
</tr>
</tbody>
</table>

**Table 2: Time intervals for some ESD monitoring**
### ESD Classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Any part that fails after exposure to an ESD pulse of 250 V or less.</td>
</tr>
<tr>
<td>1A</td>
<td>Any part that passes after exposure to an ESD pulse of 250 V, but fails after exposure to an ESD pulse of 500 V.</td>
</tr>
<tr>
<td>1B</td>
<td>Any part that passes after exposure to an ESD pulse of 500 V, but fails after exposure to an ESD pulse of 1000 V.</td>
</tr>
<tr>
<td>1C</td>
<td>Any part that passes after exposure to an ESD pulse of 1000 V, but fails after exposure to an ESD pulse of 2000 V.</td>
</tr>
<tr>
<td>2</td>
<td>Any part that passes after exposure to an ESD pulse of 2000 V, but fails after exposure to an ESD pulse of 4000 V.</td>
</tr>
<tr>
<td>3A</td>
<td>Any part that passes after exposure to an ESD pulse of 4000 V, but fails after exposure to an ESD pulse of 8000 V.</td>
</tr>
<tr>
<td>3B</td>
<td>Any part that passes after exposure to an ESD pulse of 8000 V.</td>
</tr>
</tbody>
</table>

Table 3: ESD classification criteria acc. JESD22-A114E

### Summary

This application note gives a first idea of the extensive ESD topic. Because of the enormous scope and the complexity of the topic only some aspects could be essentially described and illustrated. Therefore for further and more detailed information it is recommended to consult and use the appropriate standards, as well as the literature and the publications of the approved associations and committees.

### References:

1. ANSI_ESD_S2020-1999
3. JEDEC Solid State Technology Association, [www.jedec.org](http://www.jedec.org)
5. [http://www.siliconfareast.com](http://www.siliconfareast.com)
About Osram Opto Semiconductors

Osram Opto Semiconductors GmbH, Regensburg, is a wholly owned subsidiary of Osram GmbH, one of the world’s three largest lamp manufacturers, and offers its customers a range of solutions based on semiconductor technology for lighting, sensor and visualisation applications. The company operates facilities in Regensburg (Germany), San José (USA) and Penang (Malaysia). Further information is available at www.osram-os.com.

All information contained in this document has been checked with the greatest care. OSRAM Opto Semiconductors GmbH can however, not be made liable for any damage that occurs in connection with the use of these contents.